Week	Main focus of teaching and activities each day	Starter	Outcomes and plenary for each day
1	Mental skills for week: Order 5-digit numbers Count in steps of 1 though multiples of 100, 1000, 10,000 and 100,000 Place value in 6-digit numbers Times tables and square numbers/ square roots.		
	Vocabulary for week: PLACE VALUE, ORDERING AND ROUNDING units, ones, tens, hundreds, thousands, ten thousand, hundred thousand, million, digit, one-, two-, three- or four-digit number, place, place value, stands for, represents, the same number as, as many as, equal to, >, greater than, more than, larger than, bigger than, <, less than, fewer than, smaller than, \geq, greater than or equal to, \leq, less than or equal to, greatest, most, largest, biggest, least, fewest, smallest one... ten... one hundred... one thousand more/less, compare, order, size, ascending/descending order PROPERTIES OF NUMBERS AND NUMBER SEQUENCES square number, one squared, two squared... , prime, prime factor		
	Place value/Addition Day 1: Place value in 6-digit numbers Key questions - Where do the commas go when you write one million in figures? - If $1,000,000$ is the whole, what could the parts be? - How else can you partition the number? - What is the value of each digit in the number? - Which columns will change if you add/subtract 10,100 ,	Day 1: Order 5-digit numbers Ask each child to write a number between 40,000 and 50,000 on their w/bs. Each group work together to put their w/bs in ascending order. Fastest group wins! Repeat with different ranges. Day 2: Count in steps of 1 though multiples of 100, 1000, 10,000 and 100,000 Write the following numbers on the board: 478,597, $367,497,839,998,299,995$. Chn copy them and write the next 5 numbers after each. Day 3: Place value in 6-digit numbers	Place value/Addition Day 1: Chn use the digits $2,3,4$, 5,6 and 7 to make four different 6 -digit numbers and write them on their w/bs. Ring a number where: 6 is worth $60,000 / 3$ is worth 3000 / 4 is worth 400... Day 2: Chn work in groups. Ask chn to write 245,865 , then pass to the next child to add 10 , writing the answer underneath. Keep going until past 245,900. Repeat but this time count in steps of 100 through 256,000.

1,000, ... to/from the number?

- When do you use placeholders in numbers?
(PV additions/subtractions). CGP BK 6 pg. 2 and 6
Busy Ant 6A pg. 6-7 and 12-15
Target Bk. 6 pg 4-5

Day 2: Add and subtract $1 \mathrm{~s}, 10 \mathrm{~s}$, $100 \mathrm{~s}, 1000 \mathrm{~s}, 10,000 \mathrm{~s}$ and $100,000 \mathrm{~s}$. CGP Bk. 6 pg 13-14

Complete the number sentences such as:
$604,821=600,000+?+?+20+1$
$?=300,000+4,000+700+4$
$2,000+8+60,000+500+700,000$
= ?
Day 3: Place 6-digit numbers on a line and compare pairs of numbers; use < and >. No. lines in Number Y6 lever arch folder
WR Autumn compare and order nos to 10,000,000

What number is shown in the Gattegno chart? Look at how the chart works

Chn play in pairs. They each write a 6-digit number, then take it in turns to roll a 0-9 dice. If the number rolled is a digit in their number they subtract the number it represents, E.g. they write 572,689 and roll 7, they subtract 70,000. First child to reach zero wins.

Day 4: Investigate the Gattegno chart.
Are the statements true or false?
Adding ten thousand to a number only ever changes the digits in exactly one column.

The number consisting of 70 thousands and 400 ones is 700,400

3 ten-thousands is the same as 30 thousands.
400 hundreds is the same as 4 ten-thousands.

A large number added to a large number is always a large number.

A large number subtracted from a large number is always a large number.

Day 3: Longer session -
Reasoning with written explanation

What is the value of the digit 5 in each of these numbers?
a. 720,541
b. $5,876,023$
c. 1,587,900
d. 651,920
e. 905,389
f. $2,120,806.50$
g. $8,002,345$
h. 701,003.15

Write a seven-digit number that includes the digit 8 once, where the digit has a
value of:
a. 8 million
b. 8 thousand
c. 8 hundred
d. 80 thousand

Fill in the missing symbols (< or
$>)$.
7,142,294 7,124,294 (? 99,000
600,000 ?
6,090,100 690,100 1 1,300,610
140,017

	See June 2020 document for assessment questions Day 4: Complete the part-whole model to show the number 2,046,143 WR ... also try with other numbers Teacher planned revision of all work covered so far. CGP BK 6 pg. 8 and 9 Day 5: Use column addition to add pairs of 5-digit numbers with 6-digit answers. CGP BK 6 pg. 15 Busy Ant 6A pg. 52-52 / Target bk. 6 pg 10	Day 5: Times tables and square numbers. Square numbers and square roots. Triangular numbers. Camb 6A pg. 30-35 / WR Autumn Term Are the squares of even/odd numbers even or odd? Are the cubes of even/odd numbers even or odd? Can a number be both a square number and a cube number?	589,940 1,010,222 ? Put these numbers in order from smallest to largest. $\begin{aligned} & 8,102,3048,021,403843,021 \\ & 8,043,021 \end{aligned}$ Day 4: Pg 23. June 2020 curriculum doc - assessment Qs Day 5: Teacher feedback based on assessment
2	Mental skills for week: Counting on and back in steps of powers of ten (in tens, hundreds, thousands, tens of thousands, hundreds of thousands and in millions) Children will use their understanding of place value to support counting on or back, including with the use of an empty number line: $1,960+300$ count on in hundreds from 2,960 $12,250+260$ count on in hundreds and then tens from 12,250 $25,458+3,000$ count on in thousands from 25,458 $25,250+5,500$ count on in thousands and then hundreds from 25,250 $1,456,250+60,000$ count on in tens of thousands from 1,456,250 $2,256,500+200,000$ count on in hundreds of thousands from 2,256,500 $3,450,000+4,000,000$ count on in millions from 3,450,000 Understand place value in numbers with 2 decimal places. Count in steps of 0.01 and 0.1 through multiples of 0.1 and 1		

Pairs of nos with 1dp and a total of 10
Round nos with 2 dp to nearest 1 and 0.1

Vocabulary for week:
FRACTIONS, DECIMALS, PERCENTAGES, RATIO AND PROPORTION decimal, decimal fraction, decimal point, decimal place, percentage, per cent, \%
ADDITION AND SUBTRACTION add, addition, more, plus, increase, sum, total, altogether, ,score, double, near double, how many more to make...? subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between

Decimals/Addition
 Day 1: Look at numbers that are less than 1. Draw no.

Day 1: Understand place value in numbers with three decimal places. WR-Year 6 | Spring term | Block 3 Decimals | Step 1 and Step 2

Key questions

- What does each digit in a decimal
number represent?
How do you know?
- How many
tenths/hundredths/thousandths are there in
1 whole?
- How many thousandths are there in 1 hundredth?
- What is the value of the digit in the number?
- Which is greater, 0.3 or 0.14 ?

How do you know?
line on board with tenths - order. Introduce hundredths where do they go? Demo on activity as a class on board. Place nos with 2 dp on a line
Chn play in pairs. They shuffle a pack of 0-9 cards and sketch a 0-1 line for them both to use. The 1st child takes 4 cards and uses them in order to make a pair of numbers to mark on the line, e.g. 0.36 and 0.47 . The other child takes the next two cards and tries to make a number in between.

Day 2: Count in steps of 0.01 and 0.1 through multiples of 0.1 and 1 Camb 6A pg. 8-9
Count round the class in steps of 0.01 from 4.85 to at least 5.15 and back. Count in steps of 0.1 from 2.34 to at least 4.44 and back.

Day 3: Pairs of no.s with 1dp and a total of 10

Decimals/Addition

Day 1: Ask chn to think of a number between 3 and 4 with 3 decimal places. They work as a group to put them in order.

Day 2:

Complete the sentences.
a. 500 made 1,000 times the size is x.
b. 0.7 made 100 times the size is x.
c. 800,000 made 10 times the size is x.
d. 4,000,000 made one-
thousandth times the size is x. e. 9,000 made one-hundredth times the size is x.
f. 3 made one-tenth times the size is x.

| Day 2: Multiply and divide by 10, 100 and 1000. WR - Year 6 \| Spring term | Block 3 - Decimals | Step 5
 Move digits around decimal point on grid
 Target Bk. 6 pg. 54-55 / Camb 6+ pg 50 / CGP Bk 6 pg 57-58
 Day 3: Place numbers with 3 decimal places on lines; round to the nearest $0.01,0.1$ or 1 ; Compare 2 numbers.
 Rounding decimals WR - Year 6 \|
 Spring term \| Block 3 - Decimals | Step 3 \& Camb 6C pg 8
 Ordering decimals Camb 6C pg 6-7 / Camb 6+ pg 22-23 / WR Spring
 Day 4: Teacher planned revision of all work covered so far Add 2 or 3 amounts of money using column addition / subtraction; Use rounding to check answers.
 Day 5: Add 2 or 3 numbers with 2 decimal places | Play 'ping pong'. You call out a number with one decimal place, e.g., 3.6. Chn say the complement to 10, e.g., 6.4. Occasionally say 'ping' to which they reply 'pong'.
 Round nos with 2 dp to nearest 1 and 0.1
 Day 4: Longer session -introduce counting on and back in steps of powers of ten
 Day 5: Continue counting on and back in steps of powers of ten | The distance from London to Bristol is about 170 km . The distance from London to Sydney, Australia is about 100 times as far. Approximately how far is it from London to Sydney?
 A newborn elephant weighs about 150 kg . A newborn kitten weighs about 150 g . How many times the mass of a newborn kitten is a newborn elephant?
 Day 3: NRICH link: Round the Dice: Decimals 2
 There are three dice, each of them with faces labelled from 1 to 6 .
 When the dice are rolled they can be combined in six different ways to make a number less than 10 with two decimal places.
 For example, if I roll a 2, a 3 and a 6, I can combine them to make $2.36,2.63,3.26,3.62$, 6.23 or 6.32 .
 Now round each of these numbers to the nearest whole number:
 2.36 rounds to $2,2.63$ rounds to $3,3.26$ rounds to $3,3.62$ rounds to $4,6.23$ rounds to 6 and 6.32 rounds to 6 .
 Repeat for other rolls of the dice.
 Can each of the six numbers round to the same whole number? |
| :---: | :---: | :---: |

| | WR - Year 6 \| Spring term | Block 3
 - Decimals \| Step 4
 Busy Ant 6A pg. 16-17 / Camb 6C pg 10-11
 Then in a measures context, e.g., metres; Use rounding to check answers.
 Quick Rising Stars arithmetic timed | | Can each of the six numbers round to a different whole number?
 Day 4: June 2020 document pg 35
 Day 5: A scientist has added a pair of distances from the following, but can't remember which they were! Write 12.46 m , $9.78 \mathrm{~m}, 10.24 \mathrm{~m}$ and 11.67 m on the board. She only needed the answer to the nearest metre, and this as 24 m . Which two numbers do you think she added? |
| :---: | :---: | :---: | :---: |
| 3 | Mental skills for week:
 Counting on and back in steps of powers of ten (in tens, hundreds, thousands, tens of thousands, hundreds of thousands and in millions) Children will use their understanding of place value to support counting on or back, including with the use of an empty number line:
 1,045-200 count back in hundreds from 1,045
 12,936-720 count back in hundreds and then tens from 12,936
 125,856-235 count back in hundreds, tens and ones from 5,856
 165,452-5,000 count back in thousands from 165,452
 $261,456-30,000$ count back in tens of thousands from 261,456
 1,857,450-500,000 count back in hundred thousand from 1,857,450
 5,250,000-3,000,000 count back in millions from 5,250,000
 Add several prices, then use a number line to find change from $£ 50$ and $£ 100$
 How the times would appear on a digital clock that uses 24 -hour format | | |
| | Vocabulary for week: | | |

			Day 5: Past paper Qs
4	Mental skills for week: Children will partition the second number and then add/subtract, including with the use of an empty number line: $\begin{aligned} & 6,540+1,284=6,540+1,000+200+80+4 \\ & 8,456-2,500=8,456-2,000-500 \\ & 455,460+2,458=455,460+2,000+400+50+8 \end{aligned}$ Describe 2D shapes Recognise acute, obtuse, reflex angles Classify and sort quadrilaterals		
	Vocabulary for week: ADDITION AND SUBTRACTION add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between 2D SHAPES two-dimensional, circle, circular, semi-circle, triangle, triangular, equilateral triangle, isosceles triangle, scalene triangle square, rhombus, ,rectangle, rectangular, oblong, pentagon, pentagonal, hexagon, hexagonal, heptagon, octagon, octagonal, polygon quadrilateral, kite, parallelogram, trapezium, radius, diameter, centre, circumference ANGLES whole turn, half turn, quarter turn, rotate, rotation, angle, ...is a greater/smaller angle than, right angle, acute, obtuse, reflex degree, straight line, stretch, bend, ruler, set square, angle measurer, compasses, protractor		
	Shape and angles Day 1: Name parts of circles. CGP BK 6 pg. 137-8 Day 2: Classify and sort quadrilaterals. Camb 6A pg. 42-43 Camb 6B pg. 48-51 WR Summer Term	Day 1: Choose a shape. In pairs, chn write at least 5 facts about it. Take feedback to include: regular/non-regular; number of vertices/sides; number of right/obtuse/acute angles; lines of symmetry. Remind chn that a polygon only has straight sides, so a circle, oval, semi-circle are not polygons but are 2D shapes. Secretly choose a shape, chn work out which it is by asking questions about its properties to which you can only answer only 'yes' or 'no'.	Shape and angles Day 1: Teacher feedback Day 2: Shape Venn diagrams Day 3: Choose options 'intersect' and 'show all' at http://www.visnos.com/demos/basicangles

Day 3: Revise angles round a point on a line; Find missing angles. CGP BK 6 pg. 125-126 / Target Bk. 6 pg. 114-115
WR Summer Term
Find that opposite angles are equal; find angles in polygons. Busy Ant 6B pg 22-27 / Camb 6+ pg 84

Day 4:

Draw 2D shapes to given dimensions; know the totals of angles inside triangles and quadrilaterals; use to find missing angles. CGP BK 6 pg. 120-123 / Target Bk. 6 pg. 117-121 / Busy Ant 6B pg 20-21

WR-Year 6 | Summer term | Block 1 - Shape | Step 4

WR - Are the statements true or false?
A triangle can have three acute angles.
A triangle can have two right angles.
A triangle must have at least one obtuse angle.
All three angles can be the same

Drag one circle round to show the opposite angles and pairs to 180°.

Day 4: Teacher feedback
Day 5: Which internal angles make a triangle / quadrilateral? Which do not?

	in a triangle. If one of the angles in a triangle is a right angle, the other two angles must be the same as each other. Explain your answers. Day 5: Teacher planned revision of all work covered so far Half-termly times table check up	Day 5: Longer session -introduce / develop mental skills. Children will partition the second number and then add/subtract, including with the use of an empty number line.	
5	Mental skills for week: Children use their understanding of place value to partition decimal numbers and then add/subtract: $12.75+5.25=12.75+5.00+0.2+0.05$ Double and halve numbers to 200. Divisibility by $2,3,5,6$ and 9 To work with factors and multiples		
	Vocabulary for week: FRACTIONS, DECIMALS, PERCENTAGES, RATIO AND PROPORTION decimal, decimal fraction, decimal point, decimal place, percentage, per cent, \% ADDITION AND SUBTRACTION add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between MULTIPLICATION AND DIVISION lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder factor, quotient, divisible by, inverse		
	Multiplication and division/Fractions Day 1: Find common multiples and factors. CGP BK 6 pg. 32 / Board work and sample questions from CGP box of books in class.	Day 1: Double and halve numbers to 200. Day 2: Divisibility by $2,3,5,6$ and 9 Remind chn that a number is divisible by 3 (has 3 as a factor) if the digits add up to a multiple of 3 . Write the following numbers on the board: $462,753,875,3470$,	Multiplication and division/Fractions Day 1: Write the following on the board: Every number that has 8 as a factor must also have the factors 回 and 0 . Children

| | Day 2: Identify prime numbers,
 recognising their properties; Find
 numbers which have a pair of prime
 factors (folder sheets). Target Bk. 6
 pg. 34-35 /
 Camb 6C pg 38-41
 ** learn rhyme
 Day 3: Find equivalent fractions;
 Simplify fractions using multiples
 and factors. Target Bk. 6 pg. 42 Busy
 Ant 6A pg. 36-37
 WR Year 6 \| Autumn term | Block 3
 - Fractions A \| Step 1
 Equivalent fractions on a number
 line: WR Year 6 \| Autumn term |
 Block 3 - Fractions A \| Step 2 |
| :--- | :--- |
| Day 4: Compare and order fractions | |
| with unrelated denominators. CGP | |
| BK 6 pg. 48 / Target Bk. 6 pg. 43 | |
| Busy Ant 6A pg. 38-39 | |
| WR Autumn Term | |
| Day 5: Find unit and non-unit | |
| fractions of amounts. Target Bk. 6 | |
| pg. 48 Camb 6B pg. 98-99 | |

7515,6346 . Which of these are divisible by 3 ? Give chn time to write them on their w/bs. Which are divisible by 2 ? Which are divisible by 2 and 3? So are divisible by 6 . Digit sum rule also works for multiples of 9 .

Day 3: Divisibility by 2, 3, 5, 6 and 9 - Venn and Carroll diagrams

Day 4: Children use their understanding of place value to partition decimal numbers and then add/subtract: $12.75+5.25=12.75+5.00+0.2+0.05$
Day 5: Children use their understanding of place value to partition decimal numbers and then add/subtract: $12.75+5.25=12.75+5.00+0.2+0.05$
discuss in pairs. Take feedback and agree 2 and 4.

Day 2: June 2020 doc pg 45/46

Day 3:

In each number sentence, replace the boxes with different whole numbers less than 20 so that the number sentence is true: see mastery document page 19.

Day 4: Chn write down as many fractions equivalent to $1 / 4$ as they can, including $1 / 8 \mathrm{~s}$ and $1 / 12 \mathrm{~s}$.
What do you notice about these fractions? The numerator is $1 / 4$ of the denominator, as a quarter of the pieces are needed to show $1 / 4$ of the whole. Write: $23 / 40$, 20/100, 14/48, 14/60, 3/16. Which are less than $1 / 4$?

Day 5:

Magic multiplication squares
Children complete a magic multiplication square using their knowledge of number properties and relationships. They then explore factors and multiples to

| | Fraction of an amount - find the whole WR - Year 6\| Autumn term | Block 4 - Fractions B | Step 7
 Half - termly arithmetic test formal to be analysed Half - termly reasoning test formal to be analysed | | create a new multiplication magic square.
 Two Primes Make One Square NRICH
 Flora had a challenge for her friends.
 She asked, "Can you make square numbers by adding two prime numbers together?"
 Ollie had a think.
 "Well, let me see... I know that $4=2+2$. That's a good start!"
 Have a go yourself. Try with the squares of the numbers from 4 to 20 . |
| :---: | :---: | :---: | :---: |
| 6 | Mental skills for week:
 Children will use their knowledge of num through multiples of powers of ten: $\begin{aligned} & 5,296+234=5,296+4+230 \\ & 8,564-170=8,584-164-6 \\ & 5.6+3.5=5.6+0.4+3.1 \end{aligned}$
 Consider using an empty number line to Revise prime factors
 Count on/back in 25 s from 4-digit numb Count round the class in steps of 25 from | ber bonds and place value to partition in different ways when ad
 record jottings
 rs
 1000 to at least 1500. | ng and subtracting, bridging |

Multiply by multiples of 10 and 100 (e.g., 7×80) Find the time later using 24 -hour clock				
Vocabulary for week: PROPERTIES OF NUMBERS AND NUMBER SEQUENCES square number, one squared, two squared... prime, prime factor ADDITION AND SUBTRACTION add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between MULTIPLICATION AND DIVISION lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder factor, quotient, divisible by, inverse TIME digital/analogue clock/watch, timer, 24-hour clock, 12-hour clock				
Number/Multiplication Day 1: Number sequences Camb 6B pg. 24-31 / Target BK 6 pg 86-89 WR: Year 6 \| Spring term	Block 1 Ratio	Step 1 The relationship between 2 and 8 can be described as additive or multiplicative. A sequence starts 3, 6 ... Explain why the next number could be 9 Explain why the next number could be 12 What could the next number be in these sequences? $5,10 \ldots$ $7,21 \ldots$	Day 1: Revise prime factors \& Count on/back in 25 s from 4-digit numbers Count round the class in steps of 25 from 1000 to at least 1500. Rpt this counting on from 1003, and back, then on from 1007. Day 2: Multiply by multiples of 10 and 100 (e.g., 7×80) Day 3: Longer session -introduce / develop mental skills - practise, jottings and applying - Children will use their knowledge of number bonds and place value to partition in different ways when adding and subtracting, bridging through multiples of powers of ten Day 4: As Wednesday Day 5: Find the time earlier/later using 24-hour clock. Add on increments of time.	Number/Multiplication Day 1: Ramesh is exploring two sequence-generating rules. Rule A is: 'Start at 2, and then add on 5, and another 5, and another 5, and so on.' Rule B is: 'Write out the numbers that are in the five times table, and then subtract 2 from each number.' What's the same and what's different about the sequences generated by these two rules? Ramesh is exploring three sequence-generating rules. Rule A is: 'Start at 30, and then add on 7, and another 7, and another 7, and so on.'

	Day 5: Revise using short multiplication to multiply 4-digit amounts of money by single-digit numbers. WR Autumn Term Quick Rising Stars arithmetic timed		
7	Mental skills for week: Re-ordering numbers when adding. Children will know that it can sometimes be easier to re-order numbers when adding: Re-order to start with the largest number and understand the commutative property of addition $640+5,257$ becomes 5,257 + 640 Re-order to find pairs that total multiples of power of ten when adding/subtracting three numbers $1,488+165+12$ becomes $1,488+12+165=1,500+165$ $4.8+2.5-1.8$ becomes $4.8-1.8+2.5$ Count along fractions number line		
	Vocabulary for week: FRACTIONS, DECIMALS, PERCENTAGES, RATIO AND PROPORTION part, equal parts, fraction, proper/improper fraction, mixed number numerator, denominator, equivalent, reduced to, cancel, one whole, half, quarter, eighth, third, sixth, ninth, twelfth, fifth, tenth, twentieth hundredth, thousandth ADDITION AND SUBTRACTION add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between		
	Fractions/Division Day 1: Recognise fraction and decimal equivalents. Target Bk. 6 pg. 49 / CGP Bk 6 pg 63 WR Autumn Term Day 2: Use short division to divide up to 5-digit by 1-digt numbers and	Day 1: Count in $1 / 4 \mathrm{~s}$ then $1 / 8 \mathrm{~s}$ along a number line Show the line marked in $1 / 8 \mathrm{~s}$ Ask for equivalent fractions then count using the simplest possible fractions: $1 / 8,1 / 4$, $3 / 8,1 / 2 \ldots$ Day 2: Re-ordering numbers when adding.	Fractions/Division Day 1: Teacher feedback Day 2: For $143 \div 8$ we got 17 r 7 . How could we check this? Chn work out 17×8 : But this is 136 not 143? Agree that we need to add the remainder of 7 , to get

	by 11 and 12; Round up or down. Camb 6C pg 14-17 WR Autumn Term Day 3: Use short division to divide up to 5-digit numbers by 1-digt numbers and by 11 and 12, with fraction parts of answers, e.g., 23 $3 / 4$. / Target Bk 6 pg 16-17 WR Autumn Term Day 4: Teacher planned revision of all work covered so far Use short division to divide 4-digit numbers by 1-digt numbers, writing fraction parts of answers as decimals, e.g., $233 / 4$ as 23.75 ./ Target Bk 6 pg 16-17 Day 4a: Line graphs Camb 6B pg. 66 - 67 / Target Bk 6 pg 1460149 Day 5: Solve division word problems (including answers with fractions); Round up or down after division. Target Bk. 6 pg. 25	Day 3: Re-ordering numbers when adding. Day 4: Catch up session Day 5: Catch up session	143. Chn work in pairs to check one of their divisions. Day 3: Write divisions on board - which have the same answer? Day 4: Teacher feedback Day 5: Teacher feedback
8	Mental skills for week: Add and subtract multiples of 10,100 or	000 and adjust	

	Day 2: Subtract pairs of numbers with two decimal places using counting up (use no. line) WR Spring Term Day 3: Subtract numbers with one or two decimal places by counting up from the smaller to the larger number, e.g., $3.76-1.8$ or 13.4 2.76. (use no. line) WR Spring Term Day 4: Teacher planned revision of all work covered so far Count on and back in steps of 0.001 and 0.01. WR Spring Term Day 5: Roman Numerals - memory stick Quick Rising Stars arithmetic timed	Day 4: Say how much is needed to the next metre Play 'Ping, pong'. You say a length, e.g. 3.74 m ; the children say how much is needed in metres to make the next metre, i.e. 0.26 m . Day 5: Place value in nos with 3dp Chn play in pairs. They each write a 4-digit number with 3dp, all digits different, no zeroes, e.g. 5.274. They take in in turns to roll a 0-9 dice. They subtract what this is worth in their own number, e.g. if they roll 3 they don't subtract anything, if they roll 7 they subtract 0.07 . If they roll 0 they can choose any digit to 'zap' by subtraction. First to reach 0 wins.	Day 3: Longer session Reasoning with written explanation Day 4: Dicey differences Children use two dice with decimal numbers to find largest and smallest possible differences Day 5: Show children a counting stick with 3.5 on a Post-it ${ }^{\text {TM }}$ to label the centre. Count on in steps of 0.001 from 3.5, then back in steps of 0.001 from 3.5. Rpt with 4.25 in the centre.
9	Mental skills for week: Add and subtract multiples of 10,100 or Children will use their knowledge of add adjusting to add/subtract, including with $845+28=845+30-2$ (28 rounds up to $1,942+99=1,942+100-1$ (99 rounds $5,856-198=5,856-200+2$ (198 round	,000 and adjust and subtracting multiples of 10,100 or 1,000 and he use of an empty number line: 0) to 100) up to 200)	

Day 2: Convert between metres and
kilometres; Know approximate
conversion between miles and km
WR: Year 6 | Autumn term | Block 5

- Converting units | Step 4
Draw line graph and read
intermediate points. CGP BK 6 pg.
99 to 100
Camb 6B pg. 56- 59 (reading scales)
** Needs more days
Camb 6C pg 54 - 59 / Camb 6+ pg
105-07
Day 3: Know regularly used
imperials units and approximate
metric equivalents. Camb 6A pg. 78-
79 / Camb 6C pg 62 - 63
Day 4: Teacher planned revision of
all work covered so far Calculate
time intervals using the 24-hour
clock and add lengths of time. Y6
lever arch folder/memory stick
Day 5: Read timetables using the
$24-h o u r ~ c l o c k ; ~ c a l c u l a t e ~ t i m e ~$

Day 2: Repeat as yesterday - Repeat with each card. Change the washing line to go from 0 to 21 . Write $1000 \mathrm{ml}, 0.5 \mathrm{l}, 1500 \mathrm{ml}, 1.9 \mathrm{l}, 1100 \mathrm{ml}, 1.6 \mathrm{l}, 1.25 \mathrm{I}, 1700 \mathrm{ml}$, $1.425 \mathrm{I}, 1300 \mathrm{ml}, 1875 \mathrm{ml}$ on cards. Chn peg them on the line and write amounts in ml or I on the back of each card. Take off all the cards, shuffle them and hold up each card in turn. Chn write equivalent amount in ml or I .
** Needs more days
Day 3:
https://mathsframe.co.uk/en/resources/resource/87/itp-measuring-scales

Day 4:

https://mathsframe.co.uk/en/resources/resource/88/itp-measuring-cylinder

Day 5: Add and subtract multiples of 10,100 or 1,000 and adjust
information on their sheets/line graphs to work out the approximate equivalent in feet and inches. Discuss looking at how many multiples of 30 cm (i.e. a foot) are in the height to give an approximation in feet, then converting the remaining cm to inches.

Day 3: Teacher feedback

Day 4: Teacher feedback
Day 5: Ask question about the timetable requiring chn to convert between 12-hour and 24-hour clock times, such as: I'm thinking of a train that leaves Penzance between 5 pm and 6 pm . Which is it? I'm thinking of a train that gets into St Austell at 10 to 2 in the afternoon. Which is it?

	intervals (at least 3 hours). Y6 lever arch folder/memory stick		
10	Mental skills for week: Children will use their knowledge of doubles to add near doubles: $2.5+2.6=$ double 2.5 and add 0.1 $490+480=$ double 500 and subtract 30 Properties of 3D shapes Turn improper fractions into mixed nos \& vice versa		
	Vocabulary for week: FRACTIONS, DECIMALS, PERCENTAGES, RATIO AND PROPORTION part, equal parts, fraction, proper/improper fraction, mixed number numerator, denominator, equivalent, reduced to, cancel, one whole, half, quarter, eighth, third, sixth, ninth, twelfth, fifth, tenth, twentieth hundredth, thousandth 3D SHAPES three-dimensional, cube, cuboid, pyramid, sphere, hemi-sphere, spherical, cone, cylinder, cylindrical, prism, tetrahedron, polyhedron, octahedron, dodecahedron		
	Shape/Fractions Day 1: Recognise nets for a cube and other 3d shapes. Target Bk. 6 pg. 126-127 Busy Ant 6A pg. 22-27 / Camb 6C pg 44-47 WR Summer Day 2: Recognise and build pyramids and prisms, making nets. WR Summer Day 3: Use common multiples to express fractions in the same denomination; Compare and order	Day 1: Demo for pupils and revise properties together. Show a selection of 3D shapes on each table, both regular and irregular. Ask a child to secretly choose one of the shapes and say one of its properties, one at time. Chn discuss in group which it might be. The first group to correctly guess the shape scores a point. Rpt with other chn. Day 2: 3D shape mental maths questions from Y6 mental maths lever arch folder. Day 3: Children will use their knowledge of doubles to add near doubles	Shape/Fractions Day 1: Tell chn that opposite faces on a 1-6 dice have a total of 7 , e.g. if 3 is on one face, 4 is on the opposite face. Challenge chn to work in pairs to draw a net for a dice like this. They can cut it out to check afterwards. Day 2: Teacher feedback Day 3: Longer session Reasoning with written explanation

	fractions with unrelated denominators. Camb 6C pg 98 Day 4: Teacher planned revision of all work covered so far Day 5: Add / Subtract fractions with related then unrelated denominators. Busy Ant 6A pg. 4043 / Busy Ant 6B pg 52-53 / target BK. 6 pg 44-45 Half-termly times table check up	Day 4: Turn improper fractions into mixed nos \& vice versa. Chn shuffle 1-9 digit cards, take two to make an improper fraction, then write as a mixed number. How many can they find in 3 mins? They use the 1 and two others to make a mixed number, e.g. 13/7. They write this as an improper fraction. How many can they write in 3 mins? Day 5: Catch up session	Day 4: Domino Fractions Children use dominoes to create fractions. They explore sums of fractions using equivalent fractions and related denominators Day 5: Sam added two fractions together and got $7 / 8$ as the answer. Write down two fractions that Sam could have added. Tom wrote down two fractions. He subtracted the smaller fraction from the larger and got $1 / 5$ as the answer. Write down two fractions that Tom could have subtracted. Tom and Sam shared equally one third of a chocolate bar. What fraction of the chocolate bar did each child get?
11	Mental skills for week: Finding the difference by counting on Children will use complementary additio the use of an empty number line: 908-897 count up from 897 1,015-998 count up from 998 1,102-877 count up from 877	o count on from the smaller number to the larger number to find	a small difference, including with

```
2,017-1,988 count up from 1,988
3,000-2,899 count up from 2,899
10,004-8,997 count up from 8,997
19.5-16.3 count up from 16.3
Encouraging children to use number lines in this way provides a mental image that can assist with mental calculations
Solve a mix of +, -, x and \div% mental calculations
Find squares and cubes.
Vocabulary for week:
PROPERTIES OF NUMBERS AND NUMBER SEQUENCES square number, one squared, two squared... prime, prime factor
ADDITION AND SUBTRACTION add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to
make...? subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between
MULTIPLICATION AND DIVISION lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times...
ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve, share, share equally
one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder
factor, quotient, divisible by, inverse
```


Multiplication and

division/Addition or subtraction
Day 1: Use long multiplication to multiply up to 4 -digit numbers by 2digit numbers. CGP BK 6 pg. 26

WR Year 6 | Autumn term | Block 2 - Addition, subtraction, multiplication and division | Step 7

Day 2: Use long multiplication to multiply up to 4 -digit numbers by numbers between 10 and 20 .

Day 1: Mental multiplication - Remind chn that we can multiply by 4 by doubling twice and multiply by 5 by halving and multiplying by 10 (or vice versa). Ask them to multiply each of the following numbers by 4 and 5: 72, $48,54,124,232$.

Day 2: Mental division. Remind chn that we can divide by 4 by halving twice. Challenge chn to divide as many numbers between 50 and 100 by 4 as they can in five minutes. Afterwards, take feedback about which numbers were easy to divide by 4 in this way (multiples of 4) and which were not (odd numbers).

Multiplication and
division/Addition or subtraction
Day 1: Teacher feedback
Day 2: Past questions
Day 3: Longer session Reasoning with written explanation

Day 4: June 2020 doc pg 34
Day 5: Teacher feedback

